High-level multiplex genotyping of polymorphisms involved in folate or homocysteine metabolism by matrix-assisted laser desorption/ionization mass spectrometry.

نویسندگان

  • Klaus Meyer
  • Ase Fredriksen
  • Per Magne Ueland
چکیده

BACKGROUND Increased plasma total homocysteine (tHcy), a risk factor for cardiovascular disease, is related to genetic, environmental, and nutritional factors, in particular folate status. Future large epidemiologic studies of the genetic basis of hyperhomocysteinemia will require high-throughput assays for polymorphisms of genes related to folate and Hcy metabolism. METHOD We developed a high-level multiplex genotyping method based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the detection of 12 polymorphisms in 8 genes involved in folate or Hcy metabolism. The assay includes methylenetetrahydrofolate reductase (MTHFR) 677C>T and 1298A>C, methionine synthase (MTR) 2756A>G, methionine synthase reductase (MTRR) 66A>G, cystathionine beta-synthase (CBS) 844ins68 and 699C>T, transcobalamin II (TCII) 776C>G and 67A>G, reduced folate carrier-1 (RFC1) 80G>A, paraoxonase-1 (PON1) 575A>G and 163T>A, and betaine homocysteine methyltransferase (BHMT) 742G>A. RESULTS The failure rate of the assay was < or = 1.7% and was attributable to unsuccessful DNA purification, nanoliter dispensing, and spectrum calibration. Most errors were related to identification of heterozygotes as homozygotes. The mean error rate was 0.26%, and error rates differed for the various single-nucleotide polymorphisms. Identification of CBS 844ins68 was carried out by a semiquantitative approach. The throughput of the MALDI-TOF MS assay was 1152 genotypes within 20 min. CONCLUSIONS This high-level multiplex method is able to genotype 12 polymorphisms involved in folate or Hcy metabolism. The method is rapid and reproducible and could facilitate large-scale studies of the genetic basis of hyperhomocysteinemia and associated pathologies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MALDI-TOF mass spectrometry for multiplex genotyping of CYP2B6 single-nucleotide polymorphisms.

BACKGROUND CYP2B6 is a highly variable and polymorphic cytochrome P450 (CYP) enzyme involved in the biotransformation of an increasing number of drugs, including cyclophosphamide, bupropion, and the nonnucleosidic reverse transcriptase inhibitor efavirenz. Several nonsynonymous and promoter single-nucleotide polymorphisms (SNPs) in the CYP2B6 gene are associated with altered hepatic expression ...

متن کامل

A Microfluidic Device for Multiplex Single-Nucleotide Polymorphism Genotyping.

Single-nucleotide polymorphisms (SNPs) are the most abundant type of genetic variations; they provide the genetic fingerprint of individuals and are essential for genetic biomarker discoveries. Accurate detection of SNPs is of great significance for disease prevention, diagnosis and prognosis, and for prediction of drug response and clinical outcomes in patients. Nevertheless, conventional SNP ...

متن کامل

Matrix-assisted laser desorption/ionization mass spectrometric analysis of DNA on microarrays.

BACKGROUND Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is a powerful tool in biomolecule analysis with a wide range of application possibilities, including genotyping of single-base variations (also known as single-nucleotide polymorphisms, or SNPs) for candidate gene studies and diagnostic typing of DNA markers. We tested a method that does not require stringent purif...

متن کامل

Pharmacogenetic Application of High-Throughput Mutation Detection and Genotyping Technologies

Pharmacogenetics is a scientific discipline that examines the genetic basis for individual variations in response to therapeutics. Pharmacogenetics promises to develop individualized medicines tailored to patients’ genotypes. However, identifying and genotyping a vast number of genetic polymorphisms in large populations also pose a great challenge. This article will address the recent technolog...

متن کامل

A Microfluidic Device for Detection of Single Nucleotide Polymorphisms by Allele Specific Single Base Extension

We present a microfluidic device with integrated temperature sensors and heaters for single nucleotide polymorphism (SNP) detection. The allele specific primer is immediately annealed next to the polymorphic site, and extended by a single base. The extension product is then purified by solid phase capture, and subsequently released via chemical cleavage. After desalting, the released product is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Clinical chemistry

دوره 50 2  شماره 

صفحات  -

تاریخ انتشار 2004